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::::: THE RELATIONSHIP OF TENSILE SPECIMEN
> ., SIZE AND GEOMETRY EFFECTS TO
o UNIQUE CONSTITUTIVE PARAMETERS
o FOR DUCTILE MATERIALS
: " INTRODUCTION
:::5: Accurate knowledge of large deformation ductile material behavior is required for many design
. and analysis applications. Fracture mechanics and metal forming processes, for example, fall into this
E::: category. Two equally important issues make the continuum characterization of inelastic materials in
e
'jx general nontrivial. These issues are (i) the rational development of stress, strain and constitutive for-
.
e
‘ mulations for a wide class of materials and (ii) the determination of material constitutive parameters
N
= from material test specimen response for use in a particular constitutive formulation. This investiga-
<.
< . L . . . . . . . :
:':, tion will deal primarily with the second issue as it applies to a conventional incremental elastic-plastic

-

material formulation for large deformation and rotations. Accomplishing this requires quantitative
determination of a2 material’s uniaxial continuum stress versus strain response, valid over its full range

of deformation from zero to final fracture.

‘:', In the case of ductile metals, the uniaxial tensile test specimen is used to obtain global load-
':, displacement data. In principle, this data can be easily normalized to uniaxial material stress-strain
.:.; data. From a practical point of view, the necking phenomenon in ductile material specimens has been
";.:: a formidable barrier to accurate and complete constitutive characterization. As a result, constitutive
-
-:f parameters are usually determined from data obtained prior to necking over the deformation range

where purely uniaxial and homogeneous deformations are assumed to exist. The resulting material
description is strictly valid only in applications for which the effective stress and strain measures do
not exceed the bounds of the uniaxial data. For ductile engineering alloys presently in use. the speci-
men uniaxial data obtained prior to necking only describes a small portion of the full strain range

Manuscript approved March 27, 1987.
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experienced by the material from zero deformation to fracture initiation at the center of the neck.

This is easily estimated by comparing the uniaxial true strain at the onset of necking with the axial
component of strain at the neck (obtained from the initial to final cross section area ratio) when frac-

ture occurs.

Traditional lines of investigation have attributed the onset and subsequent development of neck-
ing to either (i) the global instability of deformation predicted by one dimensional formulations. (ii)
the presence of specimen geometry imperfections, usually in the form of a specimen taper at the
desired neck location, or (iii) material instability criteria which serve to localize deformation. These
approaches to explain necking phenomenology are summarized in a review article by Hutchinson
(1979). Recent applications of these approaches reported in the literature include Hutchinson et. al.
(1983) on neck propagation in polymers and metals, Tvergaard et. al. (1984) on cup-cone tensile frac-
ture, Kleiber (1986) on plastic localization in plain strain and axisymmetric tension and Needleman et
al. (1986) on necking and failure in porous plastic solids. Material constitutive parameters are, how-
ever, typically obtained from specimen data prior to necking for use in the analysis of necking
phenomenon. In a practical sense, this defeats the purpose of the tensile specimen as a means by

which to obtain constitutive parameters valid over the full range of material deformation.

Norris et al (1978) developed a uniaxial true stress-true strain relationship through computational
simulation of a tensile specimen gage length. Successive iterations on the true stress-true strain rela-
tionship were successful in correlating predicted specimen response with laboratory specimen data.
The computational model invoked a linear specimen taper, however, to initiate necking at the center

of the specimen.

A recent investigation (Matic, 1985) suggests that the onset and evolution of ductile tensile
specimen necking is a natural consequence of the interaction between specimen geometry. the physical
method of load application and material nonlinearity. No local instability. global instablity or

geometric imperfections were used to initiate necking. The uniaxial true stress-true strain constitutive
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parameters for the behavior of the material at the continuum scale are treated as the unknowns in the
problem. The solution curve was constructed to satisfy the requirement that computational simula-
tions of the tensile specimen compare favorably with the measured behavior of the specimen in the
laboratory. Examination of the simulation results indicated second order nonuniformity in the stress.
strain and energy fields which develop within the specimen gage length immediately upon application
of the load. These nonuniformities persist and intensify during subsequent elastic and inelastic defor-
mation of the material. Neck development results after sufficient specimen elongation. Lateral con-
traction and localization of deformation continue to intensify in the vicinity of the neck. Outside of
the neck region. however, the material unloads as the giobal reaction force decreases in response to

the diminishing cross sectional area at the neck.

The presence of deformation inhomogeneity at the onset of specimen yielding is consistent with
earlier results. Analytical results of Filon (1902) showed that boundary conditions, representative of
physical load application, produce appreciable stress and strain inhomogeneties in elastic circular
cylinders subjected to tension or compression loading. Needleman (1972) reported inhomogeneous
plastic deformation in circular cylinders at the onset of yielding. The boundary conditions in that

study included radial constraint at the ends of the cylinder.

A subsequent computational investigation (Matic and Jolles, 1986) was performed to examine
the sensitivity of tensile specimen response to the size and location of a small spherical void defect on
the axis of the specimen. The defect was an order of magnitude smaller than the smallest relevant
length scale of the specimen, which in this case was the specimen diameter. The results of this inves-
tigation suggest that defects of this type and size can be readily responsible for asymmetric deforma-

tion and reduced apparent ductility of the specimen.

The results of these two studies suggested that a hybrid computational-experimental technique 1s

a useful methodology. of sufficient sensitivity to the physical parameters of the problem. with which
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to determine ductile material constitutive parameters. The combined interaction between specimen
geometry, applied load and material behavior, which in combination produce specimen necking, can

be used to effectively solve for the material constitutive behavior.

This investigation expanded upon these earlier results to exploit specimen size and geometry
effects in conjunction with the computational-experimental approach to determine ductile material con-
stitutive parameters. In this way, the relative sensitivity of the different tensile specimen global
responses to the local material response could be evaluated and the ability of a single, unique uniaxial
true stress-true strain curve to predict the deformation of different specimens demonstrated. Unique-
ness will be referred to in the sense that one uniaxial continuum true stress-true strain curve can
predict the behavior of laboratory specimens with different geometries. Twelve different tensile
specimen geometries of HY-100 steel were tested in the laboratory. The twelve geometries were gen-
erated from four different gage lengths and three different diameters. From these specimens, the four
with extreme lengths and diameters were computationally simulated to develop a unique solution
curve for the uniaxial true stress-true strain behavior which would adequately predict the correspond-

ing observed specimen behaviors.

In summary, the following approach was used:

(1) Test a family of uniaxial tensile specimens, featuring four different lengths and three dif-

ferent diameters, to failure.

(2) Treat the uniaxial continuum true stress-true strain curve as the unknown quantity for com-

putational simulations of the extreme specimen geometries.

(3) Generate a trial true stress-true strain curve for the computational simulations.

(4) Compare the predicted axial load-displacement response and full field lateral contraction of

the tensile specimens with corresponding data from experiment.
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(5) Generate revisions for the true stress-true strain curve if differences between the computa-

tional simulations and experiments are greater than desired by repeating steps (3) and (4).

(6) Adopt the final iterate of the true stress-true strain solution curve as the continuum behavior

of the material.

EXPERIMENTAL INVESTIGATION

A family of tensile specimens was designed to obtain parametric data on the effects of specimen
size and geometry for HY-100 steel. A total of twelve different specimen geometries were examined
(Fig. 1). Three specimens of each geometry were tested, plus two extra specimens for the extreme
geometries. Three different gage section diameters of 0.76, 1.27 and 1.78 cm (0.30, 0.50 and
0.70in) and four different gage lengths of 1.27, 2.54, 3.81 and 5.08 cm (0.50. 1.00, 1.50 and
2.00in) were used to generate the twelve specimen geometries. These geometries may be described
by the gage length to diameter ratio (L,/Dg). A transition section was included in all specimens
between the gage section and the 2.54 cm (1.00in) diameter grip sections over which the load was
applied at each end of the specimen. The transition section diameter was sized such that its cross sec-
tional area was double the gage section area. For the material under consideration, this ensured elastic
response outside the gage section, geometrically similar transitions for all specimens and more than

1.0" axial distance between grip contact and gage section.

A closed-loop servohydraulic test machine was used to perform the tensile tests. The specimen
ends were gripped by hydraulic grips with a grip length of 12.3 cm (3.5in). All tests were performed
under stroke control at a rate of 0.127 cm/min (0.050in/min) and a ramp loading function. Prior to
testing, the alignment of the grips was checked and was found to be within 0.0051 cm (0.0020in).

Thus, no significant bending was introduced.
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Fig. 1 — Parametric Tensile Specimen Geometries

A clip-on extensometer and a load cell that is an integral part of the load frame were used to
measure the elongation of the specimen in the gage length and the applied load. The calibration of
the load cell was checked periodically by shunt calibration. The extensometer was calibrated directly
by a micrometer and a digital voltmeter. The extensometer calibration was performed whenever a
different gage length was used. The voltage readings from the extensometer and the load cell were
monitored by two digital voltmeters and converted to digital format. The voltmeters were simultane-
ously triggered to take data by a microcomputer at 1 second intervals. The microcomputer read the
digital voltages from the voltmeters, applied the appropriate calibration factors and wrote the reading

number, load and extensometer displacement to a disk. The number of data points per test ranged
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: between 200 and 300. The microcomputer was also used to start loading of the specimen by trigger-

N
i ing a function generator. On screen graphics allowed the test operator to monitor the progress of the

:j:: test in real time.

= A photograph of the specimen’s gage length was taken close to the occurrence of the uitimate

- load. Subsequent photographs were taken in 5 to 10 second intervals until failure. As failure became

ot

N

‘ imminent, the time interval between photographs was decreased. These photographs provided full

f"’

" field specimen deformation information and a means to characterize the neck region after the test was
._'-:'.'_ over. Since testing was not haited as the photographs were taken. no load relaxation occurred. How-
:::'» ever, the corresponding load—displacement data was flagged so that the photograph could be matched

2 with the proper specimen elongation at a later time. Typically, 12 photographs were taken for each

e specimen.

.{: For each set of specimens of identical geometry, the load (P) versus gage length elongation ()
- responses were essentially identical from the three specimens tested for each of the twelve distinct
k- -

e geometries, demonstrating data reproducibility. The P —§ data was normalized to engineering stress-
b engineering strain, i.e.

- P
o= — (n
Ao

: and
o L-L
w T E = 0 (2)
e Ly
g 5
o T I, (3)
-

B where A, is the underformed specimen cross section area and L, is the undeformed specimen gage

'

length. The data is plotted in Fig. 2 for each gage section diameter with gage section length as a
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|
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parameter. The influence of specimen geometry is apparent. The geometric similitude of the neck
geometry over all specimens (Fig. 3), with the exception of the specimen with the smallest L,/D,,
ratio of 0.71 is consistent with the increase in global specimen ductility as the specimen gage section

is decreased for a constant specimen diameter.
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Fig. 2 — Engineering stress-engineering strain curves from experiment. Curves A, B, C and D refer to !
specimen gage lengths, L, of 1.27, 2.54, 3.81 and 5.08 cm. respectively. Specimen diameter. D, of
(a) 0.76 cm, (b) 1.27 cm and (c) 1.78 cm.
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(a) (b) (c) (d)
Fig. 3 — Photograph of specimen deformation at the onset ot speci-
men tailure for the extreme gage section diameters. D,. and

lengths. L. producing aspect ratios. L,,/’D,,. of (a) 0.71. (b) 1.67.
te) 286, and (d) 6.67

COMPUTATIONAL SIMULATIONS

The tour extreme specimen geometries, i.e. the specimens featuring 0.76 cm or 1.78 ¢m (0.30in
or 0. 70m) digmeter and 1.27 ¢m or 5.08 cm (0.50in or 2.00in) gage length. were selected for compu-
tational simulation. It satistactory predictions of these four specimen responses could be obtained
using one unigue uniaxial true stress-true strain curve, then the size and geometry independence ol the

material consttutive characterization would be demornstrated.

The ABAQUS finite clement code (Hibbitt et al. 1984b) was used for the computationai simula-
. ton  The finite element grids for the four specimens are shown in Fig. 4. Axisvmmetry ot the

ceometry required that only one-guarter of the specimen be modeled.

. Type CAXBH wasymmetrie elements were used.  These are 8-noded elements with guadratic
n displacement iterpolation and an independently interpolated linear hydrostatic stress. The hyvdrostane

: stress s coupled to the constitutnve relation using a Lagrange multiplier. The use of these hvbnd cle

ments prevented physically unrealistic displacement constraints from propagating through the g
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Such constraimnts can lead to artitictally stitt™” responses of standard elements for incompressible or

nearly mcompressible detormations.

127¢m = 508 ¢cm

Fig 4 - Fmite element meshes for computational simulations of

specimens with aspect ratios, Ly/D,. of ta) 0.71. thy 1.67. ()
286 and «d) 6.67
All analyses were performed with full geometric nonlinearity to account for large strains and
large rotattons.  An updated Lagrangian formulation is used tor incremented solutions in ABAQU'S
Rik™s algorithm. which 1s load-displacement controlled. was used to ensure numerical stability, since

the loud decreases tor large specimen celongations.

Displacement boundary conditions were prescribed to simulate the physical loading conditions ot
the laboratory tests. A 635 cm €2.50in) wide strip on the lateral surtace ot the grip section ot cach
specimen was subjected to unttorm axial displacements. These conditions reproduced. tor computa

tion. the physical nature ot the loads applied by the hvdrauhic grips

An incremental rate independent plasticity theory was used tor the material constitutive model

(Hibbitr et al. 1984ay. Total strains in the multaxaal strain state ¢, are obtuined by integration of the
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linearly decomposed elastic and plastic components of the rate of deformation tensor D;;. (Refer to

Appendix I for a discussion of the ABAQUS finite element program formulation.) This integration is

LN performed under the assumption that the elastic strains remain infinitesimal, as is the case in this
?! '-7_\

s investigation. The total muitiaxial strain state ¢;;, expressed in terms of elastic and plastic com-
b o ,

\ ponents, is

» -
# . -

‘_::::: € = ¢€; + €f. (4)
~:‘_'.-'. The total logarithmic uniaxial strain e, consistent with the integration of the rate of deformation tensor
for a multiaxial strain state, is decomposed as

I....-'

o

S0 e=¢ + € &)
J.Nw'

Py The yield function f takes the form

e

7

flry) = (D) (6)
2

i where 7;; and 7 are multiaxial and uniaxial Kirchoff (or Treffetz) stress states, respectively. The
.j-:‘.\ associated flow rule governs plastic strain increments by the relation

‘N def = AL

(7
aT,'j
~
[ In the case of purely elastic behavior A = 0. For active yielding,
p ::-‘
A A>0 8
o
T = (9)
:':‘_';-
R
T Plastic strain increments also satisfy a dissipation equivalence condition
B
e
."_:..' ;
".l.J I
,',E:'; 7def =7, def (10 |
-7
v
g
"
s
A) ‘i.
>
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and a consistency condition

j’TLdr,, -2 4 =0 (11)
ij €
The von Mises yield function
3 12
fly) = 5 (8ij5i) (12)

was employed. The deviatoric stress tensor s;; is defined as

{
S,‘j = T,'j - 3‘ Tkkéij , (13)

where the hydrostatic component of stress is 7y /3.

The Kirchoff stress and logarithmic strain measures are employed because of the advantages
gained in computational implementation. The Kirchoff stress tensor 7;; is approximately equal to the
more physically motivated Cauchy stress tensor g;; for deformations involving only small changes in

volume. This condition is satisfied in these analyses. The uniaxial true stress-true strain constitutive

response of the material is formally input as Cauchy stress and logarithmic strain for the ABAQUS

program.

The form of the uniaxial true stress-true strain curve was subject only to the restrictions that it
be monotonically increasing and convex. These restrictions are consistent with Drucker’s postulates
for elastic-plastic constitutive formulations of the type employed here. The curve itself is expressed
in a multilinear form as stress and plastic strain pairs supplementing the elastic modulus and Poisson’s

ratio for the material.

The postulated material true stress-true strain curve was evaluated by one or two of the finite
element models per iteration in order to assess its ability to satisfactorily predict the observed
responses of these tensile specimens. The following guidelines were developed from the computa-

tional simulations conducted in this investigation:

LI T S SN St SR S R P ey e T ~ -
e 4 . y

T A R N TR R A A A A e S S L A e
B S e AN L I MR B e SRR




A At s b o ofd~ ottt Rat il aio et Sl b diall Bk Aab SR al el Bl A S At A-a A e ane hhe Aba ARaSdla sl el bl el ek Sab onfncas oA A & 0] ""‘Y"""T

it A

.
e

P A

(1) Low Ly/Dg specimens provide a good gross indication of the material true stress-true strain

L3
v e

3
» le s

2

' curve. A larger relative portion of the specimen is part of the necking process. and as a result is

under monotonically increasing deformation.

(2) High Ly/D specimens are most useful to guide minor adjustment to the curve obtained from
the low Ly/D, specimen data. A smaller portion of the higher Ly/D, specimens is involved in the
< actively yielding neck in the specimen. As a result, the balance between the values of stress, strain
and tangent modulus of the curve and the relative tendency for the neck to continue deforming while

the remainder of the specimen unloads are addressed.

o (3) Translation of the material true stress-true strain curve in the stress axis direction results in a

comparable translation of the predicted engineering stress-engineering strain curve.

(4) Expansion of the material true stress-true strain curve in the strain axis direction,
. . . 4 . .
corresponding to deformation prior to peak engineering stress, tends to accelerate the onset of neck-

:. - ing.

(5) Expansion of the material true stress-true strain curve in the strain direction, corresponding
to deformation subsequent to peak engineering stress, tends to accelerate the advanced stages of neck-

, ing.

After approximately five iterations the material true stress-true strain curve, developed using the
.t:: guidelines listed above, was applied to a full series of analyses performed for all four specimen
geometries modeled. The predicted engineering stress-engineering strain curves were in good agree-
ment for the three specimens with the lowest Ly/D,, ratios of 0.71, 1.67 and 2.33 from the four
extreme geometries as used in the development of the material true stress-true strain curve (Fig. 5).
The specimen with the highest Ly/D ratio of 6.67 predicted higher engineering strains than antici-

pated based upon the half-gage length elongations provided by the analyses. In fact. the predicted
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engineering stress-engineering strain curve for the high L,/D, specimen was close to that for the
second highest Ly/D, specimen. This apparent anomaly of one predicted specimen response out of
the four, in light of the observed relative sensitivity of the predicted specimen responses to the

material true stress-true strain curve, was contrary to what would be anticipated.
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Fig. 5 — Engineering stress-engineering strain curves
measured from experiment and predicted by computa-
tional simulation allowing for symmetric deformation
only: O, Ly/Dy = 0.71; +, LyD, = 1.67, O, Ly D,
= 286, X,Ly/Dy = 6.67.

Upon examination of deformed shapes (Fig. 6) of the specimens from the analysis. it became
apparent that symmetric double necking of the high Ly/D ratio specimen was being predicted, while
all three low Ly/D, specimen analyses were predicting symmetric single necking. This translated
directly into a higher engineering strain for the high L,/D, specimen since one whole neck was
present in the half-gage length model, as compared to one-half neck per half-gage length for the three
specimens with lower Ly/Dj ratios. A neck region is, of course, the source of particularly high axial

elongations.
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| Fig. 6 — Predicted deformation at the onset of specimen failure for

. aspect ratio, Lo/ Dy, of (a) 0.71, (b) 1.67, (¢) 2.86 and (d) 6.67
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'-:'\'-: Symmetric double necking is not physically observed in the laboratory. For it to actually occur,
® both spatial homogeneity and temporal simultaneity of an extremely high order would have to be
e

:'.'_-': present. Without such homogeneity and simultaneity, a single neck would develop asymmetrically. as
f.:'_:f one necking site would be preferred over another, resulting in monotonically increased loading at the

actual necking site and load reduction at the other site, consistent with the results of the other speci-

mens in this study. In order to translate the symmetric double neck results into asymmetric single

- B a e W
T
N

-t.
2 J& neck results, the influence of one neck was removed in the following manner.
L
NN Surface stretch ratios were approximated using initial nodal coordinates and nodal displacements
T
l-‘.. -« 0 . - - .
D at the surface (Fig. 7). At the neck locations the strains were significantly higher than those along the
A
'. .“. . . . . . - .
i remainder of the specimens. To obtain an approximation to the total asymmetric specimen length, the
hed
-:'.:- contribution of strains at one neck to the total specimen length were subtracted from the total. The
'.':-'j average ‘‘background’’ strain contributions to the specimen length were substituted for the neck seg-
v -‘;: . . i -
ment just removed. The result was a total specimen length based on the contributions of one neck
- region and a complementary background deformation. Thus,
'
' Lm = Ldn - Ln + Lh (14
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where L, is the length of the specimen with a single neck. Ly, is the length of the specimen with a
double neck. L, is the length contribution of a single neck and L, is the length contribution due to

background deformation outside the neck. The engineering strain for the specimen will be

- L:n - LO
T —_— (15)
€ LO

This resulted in good agreement between the engineering stress-engineering strain curve predicted by

the analysis and the experimental data for the high Ly/D, geometry as seen in Fig. 8.
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Fig. 7 — Transiation of predicted symmetric double neck specimen
response into asymmetric single neck specimen response

For this interpretation to be correct, the laboratory tensile specimens should show evidence of
symmetric deformation for the three lower L /D specimens and asymmetric deformation for the high
L/D specimen. An eccentricity measure to quantitatively describe necking asymmetry may be .

defined by the expression

16
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Fig. 8 — Engineering stress-engineering strain curves measured
from experiment and predicted by computational simulation
allowing for symmetric or asymmetric specimen deformation:
G Lo/Dy = 0.71; +, L ¢/Dy = 1.67; 0. Lo/Dy = 2.86; X.
Lo/Dg = 6.67.

(16)

where e is the eccentricity, L is the length of the specimen gage length just prior to specimen fracture
and z, is the distance from a specimen gage mark to the point of minimum specimen diameter.
Clearly, when the neck occurs at the center of the specimen, z, = L/2 and therefore ¢ = 0. When
the neck is at either end of the gage length, z, = 0 or L and therefore ¢ = 1. Perfect symmetry
coincides with e = 0, while maximum possible asymmetry coincides with ¢ = 1. These results are
plotted in Fig. 9. For Ly/D less than 1.67, the experimental data shows very low values of ¢, indi-
cating almost perfect symmetry. For L,/D, greater than 1.67, the eccentricity values tend to increase

to an average of about 0.5 for Ly/D greater than 4.0,

The computational prediction of asymmetry in specimen deformation is verified by the experi-
mental data. The computational predictions, performed for ideal specimens free of imperfections.

establish eccentricity values for comparison purposes. The maximum measured diameter impertfec-
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o tions exhibited by the laboratory specimens, tabulated in Appendix II, were on the order of 1072
.~
a s
»:;:—’, Imperfections of this magnitude, in line with the conclusions reached by Matic and Jolles (1986) on
WA the role of geometric imperfections in asymmetric necking, are consistent with the measured neck
A
L
‘o eccentricity values and scatter of the laboratory data as compared to the computationally predicted
i
B,
,:) . values.
1:\.
NN The hierarchy of imperfections effects is apparent:
N
i-¢l'
A (1) Imperfections are not necessary for necking to occur
=
A.'x_"l
:-::}' (2) Imperfections which are effectively one order of magnitude smaller than the effective speci-
‘._',. men dimension (in this case diameter) are responsible for asymmetric necking
Rall N
X (3) Symmetry imperfections significantly smaller than the effective imperfection size are suffi-

A cient to determine precedence between two apparently simultaneous events at the continuum scale.
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\ The solution curve is shown in Fig. 10. The tabular form for the curve is given in Table I.
SNy
s . .. . N
v The uniaxial continuum true stress-true strain curve show a uniaxial yield stress of 7.17 x 108 N/m*
'*""-"". ) L. . . 9 3 .2
o) (104,000 Ib/in") and a uniaxial maximum stress of just under 1.03 x 10” N/m- (150,000 Ib/in~). The
LSS
N \.'v.. . - . 2 . ~
g negligible slope at the higher strain value is consistent with the ductility of HY-100. The notion of a
> .
limit load in a rigid—perfectly plastic sense can be viewed as extrapolation back to the stress axis
o from the maximum stress value.
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':._\:. Fig. 10 — Solution curve for uniaxial continuum true stress-true

strain response of HY-100 steel

ﬂ"'
t’;-_". The photographs taken of the tensile specimens strongly suggest the concept of a fully developed
:::: neck. Geometric similitude is in evidence for all but the specimens with a gage length of 1.27 ¢m

."m

(0.50in) and a diameter of 1.78 cm (0.70in). This specimen geometry had the lowest L,/D, ratio.

and featured the lowest percent reduction of area on the average. Further examination of this
geometric similitude in the neck profile tends to support a view that the length of the neck remains a

constant multiple of the original specimen diameter. The inflection points of the deformed specimen

o contour, which appear above and below the minimum specimen diameter at the neck. remain

L

b separated by a constant distance A from incipient necking to specimen fracture (Fig. I1).
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o Table 1 — Solution curve, in tabular form, for uniaxial true stress-true
j:- plastic strain response for HY-100 steel
- Uniaxial True Stress, o Uniaxial True Plastic Strain. ¢
o 7.171 x 10 N/m | (1.040 x 10° Ib/in) 0.0000
o 7.929 (1.150 x 10° Ib/in) 0.0240 |
-0~ 8.343 (1.210 x 10° Ib/in) 0.0500 !
95 8.964 (1.300 x 10° Ib/in) 0.0955 |
' 9.101 (1.350 x 10° Ib/in) 0.1410 |
O 9.550 (1.385 x 10° Ib/in) 0.1738 |
9.605 (1.393 x 10° Ib/in) 0.2060
e 9.687 (1.405 x 10° Ib/in) 0.2386
o 9.825 (1.425 x 10° Ib/in) 0.3034
' 9.963 (1.445 x 10° Ib/in) 0.3682
- 1.002 x 10° (1.454 x 10° Ib/in) 0.4332
- 1.007 (1.460 x 10° Ib/in) 0.4981
A 1.011 (1.467 x 10° Ib/in) 0.5631
o 1.016 (1.473 x 10° Ib/in) 0.6280
o 1.017 (1.475 x 10° Ib/in) 0.8300
PY 1018 (1.477 x 10° Ib/in) 1.1420
oz 1.020 (1.479 x 10° Ib/in) 1.6620
e 1.021 (1.481 x 10° Ib/in) 2.7020
Ng Elastic modulus, £ = 1.80 x 10'! N/m* (26.1 x 10° Ib/in)
e Poisson ratio, » = 0.3
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Fig. 11 — Definition of tensile specimen neck length based
on geometric features and deformation
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:E:: The inflection points. while providing the intrinsic geometric reference length tor the neck. do
Ol
* not fully distinguish the actively flowing material of the neck from the material outside from the neck.
Y
- Outside the neck, flow has ceased and unloading is in progress as the axial stress acting on the speci-
:',: men cross section decreases with the global load due to neck development. In fact. for the HY-100

.

\ specimens of Ly/Dg ratio greater than one, additional reference lengths based on the stress (or strain)
- states in the neck provide a more compiete picture on which to define a neck length. Specifically. the
2 -

- hydrostatic stress contours which are bounded and contain the center of the neck extend over a total
- length 24 centered on the minimum diameter plane. The von Mises equivalent stress, which under
; the assumptions of plasticity theory as employed in the computational simulations govern the plastic
~ o . : : - :
deformation, is essentially uniform over a distance 34, centered on the plane of minimum diameter.
. The neck radius at both ends of this distance is almost that of the specimen outside the neck.

k- From a phenomenological point of view, this last observation provides a functional definition of
r -

H the neck based on an intrinsic length over which energy is actively dissipated. For the particular
. material under consideration this length is 3A, or three times greater than the intrinsic geometric
7 length parameter A defined from the inflection point separation on the specimen profile. Thus, prior
h

to the onset of necking the energy dissipation throughout the specimen is driven by axial extension.

:{: As the neck develops energy dissipation is confined to the neck, promoted by lateral contraction of
[ the neck.

‘-:: Working backward from the final specimen profile. the initial length of the neck (L) ON the
= undeformed specimen can be calculated, and the ratio (Lg)pecx/Dq determined. For the HY-100
.A‘ . . .

material under consideration,
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This implies that for a fully developed neck to form,

i (LO)ncck

=z —. (18)
Dy Dy

That is to say, the specimen aspect ratio must be at least that required for a fully developed neck.

- The specimen Ly/D, ratio fell below 1.0 only for the L, = 1.27 ¢m (0.50in), Dy = 1.78 ¢m

L (0.70in) specimens from the full set of over three dozen specimens featuring twelve different

) CONTINUUM MATERIAL TOUGHNESS CONCEPTS
::‘_h-',:‘_.'_ The strain energy per unit mass at a given instant during deformation. will be
<o

- 1 AW

w = |lim - — (19

={" 2L
w = SO deij 20y

where p is the mass density, W is energy and V is volume. This energy density incorporates both
stress and strain into a fundamental quantity relevant to thermodynamic descriptions of material defor-

= mation and damage. The energy density is a scalar quantity which takes into account all components

.

ot

o LS

S of the stress and strain tensors in a physically consistent manner.

2

4
gl

- Failure of the material due to fracture, at the continuum scale, can be associated with the value of the

-

-

energy density at which fracture occurs. Thus. the material toughness is defined as

fe ) qU
w, = S — de, 2D

. 0 o /

.
'-:..-_' where w, is the critical strain energy density value.
* ﬁ~.\
o
‘R . . .

el For ductile metals. the matenal density varies only shightly, even over large deformations. For
s
~ this reason, it is common to detine an energy per umit volume density
o -
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£
= SOI UU déij N (:3)
with an associated critical value

(e )

I3

W, = SO aij dfij . (24)

The energy per unit mass is fundamental, but the energy per unit volume is. equally appropriate for

constant volume deformation processes.

The use of an energy density criterion for continuum fracture is consistent with the ideas
expressed by Freudenthal (1950) on material behavior and scaling considerations. Gillemot (1976)
examined cylinderical tensile specimens using analytical and empirical techniques. The strain energy
density per unit volume, absorbed by the material up to the instant of fracture, was calculated from
global specimen response and deformation geometry. Calculations of critical strain energy density
values from computational simulations, however, are able to address the large deformation continuum
toughness in detail appropriate for structural integrity analysis. Applications to structural integrity
prediction, using continuum material toughness concepts as outlined here, include investigations by
Matic and Jolles (1987a, 1987b) into the defect tolerance of welded components and' the role of

material, geometry and applied load on weld system performance.

For a multiaxial state of stress, each of the six stress-strain pairs, three normal and three shear.

must be evaluated and summed, i.e.

le). (e)),
W, =SO 0’||d6“ +50

(el))r
Oyy desy + oy3deyy +
22 d €3 o 13 déyy

fe,), leyy), fe),
opdey + 50 o3 dexy + io oy deyy. (25

It should be noted that one or more individual terms in the multiaxial expression can be negative.

Their total. w., must be positive, however.
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Tensile specimen failure is known to initiate at the center of the specimen neck. where the
stresses and strains are multiaxial in character. The stresses and strains are plotted for the two 1.78
cm (0.70in) diameter specimens for finite element integration point nearest to the center of the speci-
men (Fig. 12). Symmetry conditions at the center of these specimens are reflected in the absence of
any significant shear stress or strain components. The L,/D, ratios for these specimens are 0.72 and
2.86, respectively. The lower ratio specimen is below the threshold ratio of 1.0 for fully developed

necking. The higher ratio specimen is above the threshoid.

All strain magnitudes are monotonically increasing over the deformation history. For the low
Ly/Dg specimen, the absence of a fully developed neck results in monotonically increasing values of
stress over the entire deformation. Integration of these curves yieilds a critical energy density at the
fracture initiation site of 8.89 x 10% N-m/m® (1.29 x 10° Ib-in/n’). For the high Ly/D, specimen.
the presence of a fully developed neck is preceded by essentiaily uniaxial deformation. As a result,
the z component of stress monotonically increases while the r and § components of stress are initially
zero and monotonically increase only after necking has begun. Integration yields a critical energy

density of 1.20 x 10° N-m/m’® (1.74 x 10* Ib-in/n%).

Essentially proportional loading is present in the low Ly/D, specimen stress state. Distinctly
nonproportional loading is evident for the high Ly/D, specimen. The difference in the critical energy
density is significant, particularly in light of the relative insensitivity of the stress-strain components
to different loading histories. The difference in the two sets of stress-strain piots occurs for the r and
6 components and is probably an indication of different energy dissipation mechanisms being
developed during the initial deformation and yielding of each specimen. While on the larger scale the
difference between the plots may appear small, in an energy sense it is much greater. The sensitivity

of the continuum material toughness to nonproportional deformation histories has sigmticant implica-

tions for fracture initiation, crack growth and structural integrity predictions.
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SUMMARY

A hybrid computational-experimental approach for the determination of material uniaxial consti-
tutive parameters is applied to the interpretation of tensile test specimens of different sizes and
geometries. The iterative development of a single unique material true stress-true strain curve for
which computational predictions agree with experiment data for different specimens was discussed.

The unique solution curve for HY-100 steel is presented.

The tensile specimen neck is observed to be geometrically invariant to size and geometry effects
if the specimen Ly/D aspect ratio is greater than one. This ratio defines a lower bound for a fully
developed neck. An upper bound for the Ly/D, ratio exists in terms of specimen deformation sym-
metry. Evidence for this upper bound was observed computationally and confirmed from experiment

data.

Continuum material toughness concepts were discussed in terms of the critical energy density to
produce fracture. Computational reconstruction of the stress-strain histories leading to fracture initia-
tion for the HY-100 specimens strongly suggest that the critical energy density is different for an arbi-
trary nonproportional deformation history when compared to a proportional deformation history. This
seéems to be true despite the general insensitivity of the stress-strain components to the different load-

ing histories encountered.
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APPENDIX 1

ABAQUS Finite Element Program Formulation

A brief summary of the ABAQUS finite element program is included here for reference and |
completeness in view of the various possible theoretical formulations available for geometrically and

materially nonlinear analysis. The reader is referred to Hibbitt et al (1984a) for further details.

For a material particle at reference position X; at time r equal to zero, its current position x, at a

later time may be expressed as

x; = x(X;,1). (Al)

An orthogonal coordinate system of unit base vectors is assumed. The relative position dx, between
two material particles in their current configuration may be expressed in terms of their relative posi-

tion in their reference configuration

dx,‘ = &dxj (Ad)
ax,
= F, dX, (A3

where F); is defined as the deformation gradient.

The velocity of the material particle will be



=3
g
..T.vf
r0
e
:; The incremental velocity between two particles will be
dv, = 2y AS)
v, = — (
o toax
o
J‘- av,- ax! dX (A6
\ = o o, 44 )
N axj GXk
S
.r__v"
bo = L;FyaXi (AD
N
e where L;; is the velocity gradient at a material point in the body. The velocity gradient may be
i "--_“
SR . . .
{ ::.: decomposed into the sum of its symmetric and antisymmetric tensor components as
; .s.-'
A
_ 1 1
Lo
= _1 1
_':: - 2(V"J +Vj"‘) + E(V"‘j —Vj_") (Ag)
‘ - -
= D, +9; (A10)
’ o where D;; is the rate of deformation tensor, associated with material straining, and Q,; is the material
) spin tensor associated with pure rotation at the material point.
s
™
,{\j For a material body of volume V and surface S in its current configuration, force equilibrium in
» 5 4
JA
s integral form is given by
' ::::::
I, '~':‘:
i fouds +{ f.dv =0 (ALD)
LA
. where ¢, is the surface traction vector per unit of current area and f, is the body force vector per unit i
.
- }-
AN of current volume. The Cauchy stress tensor o, is related to 1, by !
.
o
"
Shi t, = g,n, (A1)
oy
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where n, is the outward unit vector normal to surface §. Using (A12) in (All) along with Gauss’

theorem to transform the surface integral to a volume integral.

§V(a,,‘, +fodV = 0. (A13)

The integral must, in general, be zero. Therefore,

Moment equilibrium in integral form requires

Ssxi‘jeijkds + Syxif/ei,de =0 (A15)

where ¢, is the permutation symbol. Using Gauss’ theorem

Sv(xi,lajleijk + X0 € Y X 0pe X fiep)dV =0 (A16)

Evaluating each term in this expression and using (A14) provides that g;; must be symmetric. i.e.

(A1)

The differential force equilibrium expression (A14) is used to generate a virtual work expression
by taking the dot product with a virtual velocity, v,", and integrating over the volume. This takes the

form, after application of Gauss’ theorem,

SV [(a,,v,-'),l -,V +f‘v,'} dv = 0. (A18)

The virtual velocity field must satisfy continuity and prescribed velocity requirements. Expressing the

first integral in terms of tractions and rearranging

f o,v,,dv = [ vidS +f fviav (A19)

From the definition of the velocity grodient, the virtuai velocity gradient is

3
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v, =L, (A20)

.

=D; +Q; (A21)

where the virtual rate of deformation, D,;. is symmetric and the virtual spin, Q,;. 1s antisymmetric.

In light of the Cauchy stress tensor symmetry, it follows that

f,04D5dV = [ 1v'dS +§ fv'av. (A22)

The left hand side of this expression is converted to an integral taken over the reference volume V, .

i.e.

fsuv V,0,,D;JaV, = Sstivi.dS + i vi'dv . (A23)

where J is the determinant of the Jacobian. J is equal to the ratio of the differential volumes in the

reference and current configuration.

The Kirchoff (or Treffetz) stress is defined as

T = Jaij . (A24)
g Therefore,
L)
N
SO
> ] L] . L
- §, 7yD5dv, = {1v'dS +f fiviav (A25)
>, ?
.0
e The Kirchoff stress, 7,,. is equal to the Cauchy stress, o;,, when J is equal to unity. For the
A material behavior considered in this analysis J deviates from unity by only a small amount. There-
-»-::j- fore, the constitutive formulation in terms of Cauchy stress, as described in the main body of this
-
~ paper will be applicable when expressed in terms of Kirchoff stress.
N
N
N Equation (A26) is the virtual velocity equilibrium equation and is the basis for interpolation and
IS
M
i discretization for the finite element formulation. The virtual velocity at a point inside an element will
- -? ]
"’ be interpolated as
N
2%
N
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v = N,V (A26)

where the summation is understood to involve only those nodal values \7; relevant to a particular ele-

ment. The virtual rate of deformation becomes

. 1

D; = E(Nik;k‘)'j + (Njk‘_'k.),i (A27)
1 —
= ?(Nik,j + N v (A28)
Therefore, (A25) becomes
l -— -— pu—

IVOET"‘,‘(N&J +Njk.“)vdeo = 5SfiNikadS + syfiNik deV (A29)

or, since v, appears in each integral,

1

jyjr,-,(zv,-k_j + Ny )dvVo = ;s:izv,.,‘ds + SiNgdV . (A30)

The integrations are taken with respect to the discretized volumes and surfaces consistent with element

and nodal definitions.

Equation (A30) forms the basis for the finite element solution. An incremental solution is gen-
erated by the Newton algorithm. The Jacobian of (A30) is required for the incremental solution, and

results in the introduction of a Kirchoff stress rate, 7,

;;+ Into the incremental equilibrium equation.

The stress rate takes the form

TU = ;U +Qlk rkj + leﬂjk (A3l)

where 7, is the total stress rate, ;,l is the material (or Jaumann) stress rate associated with the
material response through the constitutive formulation. The remaining terms involving Q, are stress

rate contributions due to rotation. In practice, all constitutive calculations are performed using 7, .
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The total strain measure ¢; is calculated in a manner consistent with the integration of D, .
This generates logarithmic strain measures which are energy conjugate to the Kirchoff stress 7,
which, as discussed above, is approximately equal to the Cauchy stress o;, in _he analyses under con-

sideration.
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APPENDIX II
Laboratory Specimen Imperfections

Prior to testing, the tensile test specimen gage section diameters were measured. Deviations
from the nominal specimen gage diameter D are tabulated below for each specimen as the maximum
and minimum specimen diameters, (Dg)qax and (D )i, Measured along the gage length. The diame-

ter imperfection d is defined as

_ (DO)max - (DO)min
Do)max + Dodmin

This may be interpreted as the average deviation (from the average diameter) divided by the average

dy (AIL.1)

diameter.

The specimens modeled for the computational simulations were assumed to be free of any
geometric imperfections. The scatter of neck eccentricity values with respect to the computational
predictions of neck eccentricity values, as discussed above, are consistent with the small imperfections

in the specimen diameters listed in Table AIl-1.
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Table All-

i

T T T T T

Maximum measured diameter impertecuon value of laboratory specimens.

Specimens not measured prior to tesung are denoted by *—"" values.

Nominal Gage

Nominal Gage

Maximum Gage

Minimum Gage

| Diameter Imper- .

AP N

S S

PSR GEREN
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Length. L, Diameter. D, Diameter. (D o,  Diameter, (D) o, | fection. d,
"1.27ecm (030 in) 076 c¢m (0.30in) 1+ 0770 ¢m (0.303 in)  0.765 c¢cm (0.301 in) 1.003
‘ ‘ | 0.767 cm (0.302 in) | 0.762 cm (0.300 in) 003
1 0.772¢m (0.304 in) ¢ 0.767 cm (0.302 in) 0.003
1.27 em (0.50 in) | 1.275 ¢cm (0.502 in) | 1.270 ¢m (0.500 in) 0.002
| 1.285 cm 10.506 in) | 1.280 cm (0.504 in) 0.002
; 1 1.275 ¢m (0.502 in) ¢ 1.275 cm (0.502 in) 0.000
i 1.78 ¢cm (0.70 in) ‘ 1.778 cm (0.700 in) | 1.778 cm (0.700 in) 0.000 i
: b 1.791 ¢m (0.705 1n) ' 1.786 cm (0.703 in) 0.001 i
1 | 1.786 cm (0.703 in) | 1.781 cm (0.701 in) 0.001 ‘
i I 1.773 cm (0.698 in) 1 1.770 cm (0.697 in) 0.001
| ! | 1.783 ¢cm (0.702 in) | 1.783 cm (0.702 in) 0.000
"2.54¢m (1.00 in) |} 0.76 cm (0.30 in} | 0.767 cm (0.302 in) | 0.762 c¢m (0.300 in) 0.003
‘ | 0.777 ¢cm (0.306 in) | 0.767 cm (0.302 in) 0.006
0.767 ¢m (0.302 in) | 0.762 ¢m (0.300 in) 0.003
[.27cm (0.50 in) | 1.278 cm €0.503 in) | 1.267 cm (0.499 in) 0.004
1.270 ¢m (0.500 in} | 1.267 cm (0.499 in) 0.001 ‘
1.295 ¢cm (0.510 in) | 1.265 ¢m (0.498 in) 0012 {
1.78 cm (0.70 in) | 1.786 cm (0.703 in) | 1.778 cm (0.700 in) 0.002 !
1.783 cm (0.702 in) | 1.775 ¢m (0.699 in) 0.002 |
1.773 cm (0.698 in) | 1.770 ¢m (0.697 in) 0.001
381 ecm (1.50in) | 0.76 cm (0.30in) | 0.775 ¢cm (0.305 in) | 0.765 ¢cm (0.301 in) 0.007 ‘
0.775 ¢m (0.305 in) | 0.765 cm (0.301 in) 0.007 !
0.772 cm (0.304 in) | 0.767 cm (0.302 in) 0.003 !
1.27cm (0.50 in) | 1.280 cm (0.504 in) | 1.275 ¢cm (0.502 in) 0.002
1.283 ¢cm (0.505 in) | 1.273 c¢cm (0.501 in) 0.004
1.270 cm (0.500 in) | 1.260 cm (0.496 in) 0.004
.78 cm (0.70 in) | 1.786 ¢cm (G.703 in) | 1.786 ¢cm (0.700 in) 0.002
1.778 ¢cm (0.700 in) | 1.773 c¢cm (0.698 in) 0.001
1.793 ¢cm (0.706 in) | 1781 ¢cm (0.701 in) 0.004
S08cm (200 in) { 0.76 cm (0.30in) | 0.777 ¢cm (0.306 in) | 0.762 c¢cm (0.300 in) 0.010
0.765 cm (0.301 in) | 0.757 cm (0.298 in} 0.005
1.27 ¢m (0.50 in) 1.273 cm (0.501 in) 1.260 ¢cm (0.496 in) 0.008
1.275 ¢cm (0.502 in) | 1.265 ¢cm (0.498 in) 0.004
1.283 cm (0.505 in) 1.273 ¢cm (0.501 in) ! 0.004
1.78 em (0.70 in) | 1.796 ¢cm (0.707 in) | 1.765 ¢m (0.695 in) 0.009
1.791 cm (0.705 in) | 1.778 ¢m (0.700 in) 0.004
1.770 em €0.697 in) | 1.763 cm (0.694 in) 0.002
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